わたしはこれを合成(3×3)超格子体ゲボーと名づけることにした。ここではゲボー(3×3)の持つ驚異の構造について述べてみたい。
まずこの合成超格子体の由来をおさらいしておこうと思う。
さらに歴史を遡ると、
そう、すべては1と0に還元されるのだ。この事実は、つねに心の片隅おいておいてもらいたい。
さて、このゲボー。2乗数生成する能力にかけては、超格子体界随一といってよい。この章では四積周回というシステムに着目しよう。
まずは準備体操。この動画にて前章でたしかめた事実のおさらいをしておく。
以下の式は、これから述べることの基本となるので、しかと目にやきつけてもらいたい。
四積によって生成された四つの数。それらをマーの呼吸で継ぐと2乗数になる。これは先に他のいくつかの超格子体についてもたしかめた事実だ。
だが、ゲボーにおいては、この四積周回システムとの親和性が驚異的なレベルなのだ。どういうことか? 説明は不要。これを見てもらうのがいいだろう。
途中までの四積周回のプロセスはおなじ。最終工程で各四数を2乗するという工程が追加されている。そして、それでもなお、2乗数生成能力はみじんの陰りも見せない。
まことに驚くべきことではあるが、これは序章にすぎない。ひきつづきこれを。
最終工程で各四数に3乗をほどこす。それでもなお2乗数生成を成功。このあたりから、諸君らも目の色を変えはじめるにちがいあるまい。わかっている。3乗→4乗に引きあげてみようではないか。
5乗? おそれることはない。やってみれば、すぐにわかること。
またもや、2乗数生成において大成功をおさめている。じつのところ、これ以降の6乗、7乗、8乗∙∙∙においても2乗数生成能力は発揮されつづける。ぜひ、諸君らも、その手でたしかめてみてほしい。
いったい、ゲボーの内部でなにが起きているのか?
そもそもの等式に立ち返りたい。
思えば、これは上記のように四数に1乗がほどこされていると解釈することができる。では、1乗を一つさかのぼって0乗に変更してみよう。
0は0の2乗数である。
こじつけに聞こえるだろうか?
ここで、さらに大胆なアプローチ変換に挑む。マーの呼吸→アーの呼吸に呼吸法を交換するのである。
4はまぎれもなく2乗数である。
まだ不審な目で眺めている者もおいでだろう。
では、これを見てほしい。
このとおりである。
なぜ? わかっている。わたしもおなじきもちである。半信半疑のまま、ここから累乗をかけあがってゆこう。
●合成超格子体ゲボー(3×3):四積周回2乗(アーの呼吸)
●合成超格子体ゲボー(3×3):四積周回3乗(アーの呼吸)
●合成超格子体ゲボー(3×3):四積周回4乗(アーの呼吸)
●合成超格子体ゲボー(3×3):四積周回5乗(アーの呼吸)
マーの呼吸によってもアーの呼吸によっても、2乗数生成能力は不変。信じがたいことではあるが、どうやらこれが真実のようである。